练习题

    29.1 一家企业签订了一项上限合约,合约将3个月期的LIBOR利率上限定为每年10%,本金为2000万美元。在重置日3个月的LIBOR利率为每年12%。根据利率上限协议,支付的数目是多少?何时付款?

    29.2 解释为什么一个互换期权可以被看做是一个债券期权。

    29.3 采用布莱克模型来对一个期限为1年、标的资产为10年期债券的欧式看跌期权定价。假定债券当前价格为125美元,执行价格为110美元,1年期利率为每年10%,债券远期价格的波动率为每年8%,期权期限内所支付票息的贴现值为10美元。

    29.4 仔细解释你如何利用(a)即期波动率,(b)单一波动率来对一个5年期的上限定价。

    29.5 计算以下期权的价格:在15个月时将3个月期的利率上限定为13%(按季度复利),本金为1000美元。对应这段时间的远期利率为12%(按季度复利),18个月期限的无风险利率为每年11.5%(连续复利),远期利率的波动率为每年12%。

    29.6 某家银行采用布莱克模型来对欧式债券期权定价。假定银行采用了5年期限、标的资产为10年期的债券期权隐含波动率来对这个债券上9年期的期权定价。你所得到的价格太高还是太低?解释你的答案。

    29.7 采用布莱克模型来计算具有4年期限的欧式看涨期权价格,标的资产是从现在起5年后到期的债券。5年期债券的现金价格为105美元,与5年期债券具有同样票息率的4年期债券的现金价格为102美元,期权执行价格为100美元,4年期无风险利率为每年10%(连续复利),4年后债券价格的波动率为每年2%。

    29.8 看跌期权的期限为5年,标的资产为在10年后到期的债券,债券收益率波动率为22%,如何对这一期权进行定价?假定在基于今天的利率下,债券在期权满期时的久期为4.2年,债券的远期收益率为7%。

    29.9 如果利率上限与利率下限执行价格相同,什么样的金融产品等价于一个5年期零费用利率双限?这里的共同执行价格等于什么?

    29.10 推导关于欧式债券期权的看跌-看涨期权平价关系式。

    29.11 推导关于欧式互换期权的看跌-看涨期权平价关系式。

    29.12 说明当上限隐含的布莱克(单一)波动率不等于利率下限隐含的波动率时,会有套利机会。在由市场经纪人给出的表29-1中的报价里存在套利机会吗?

    29.13 当债券价格服从对数正态时,债券的收益率会取负值吗?解释你的答案。

    29.14 以下欧式互换期权的价值为多少?这个期权给持有人在4年后有权进入一个3年期的利率互换,在互换中支付的固定利率为5%,同时收入LIBOR,互换本金为1000万美元,互换每年付款一次。假设收益率曲线呈水平状,为每年5%(连续复利),互换率的波动率为20%。将你的答案同DerivaGem给出的结果进行比较。再假设所有互换率均为5%,所有OIS利率均为4.7%。利用DerivaGem计算LIBOR零息曲线与互换期权价值。

    29.15 假设一个零息债券的收益率R服从以下过程

    空标题文档 - 图1

    其中μ和σ均为R和t的函数,dz为维纳过程。利用伊藤引理证明在接近到期日时,零息债券价格的波动率会下降到0。

    29.16 通过手算来验证例29-2中的期权价格。

    29.17 假定1年、2年、3年、4年、5年期的LIBOR对定息每半年支付的互换率分别为6%、6.4%、6.7%、6.9%和7%。面值为100美元、每半年支付一次、上限利率为8%的5年期限利率上限价格为3美元。利用DerivaGem软件来确定

    (a)以LIBOR贴现时,5年期上限与下限的单一波动率。

    (b)以LIBOR贴现时,上限利率为8%的5年期零费用利率双限中的下限利率。

    (c)以OIS贴现时,(a)和(b)的答案又是什么?假设OIS互换利率比LIBOR互换利率低100个基点。

    29.18 证明V1+f=V2,其中V1为介于时间T1与T2之间付出固定利率sK并同时收入LIBOR的互换期权的价值,f为介于T1与T2之间收入固定利率sK并同时付出LIBOR的远期利率互换的价值,V2为介于T1与T2之间收入固定利率sK的互换期权的价格。并由以上公式来证明当sK等于当前远期互换利率时,V1=V2

    29.19 假定零息利率如练习题29.17所示。利用DerivaGem来决定以下期权的价格:期权持有人在1年后有权进入一个5年期的利率互换,在互换中支付的固定利率为6%,同时收入LIBOR,互换本金为1亿美元,互换付款日为每半年一次,互换利率的波动率为21%。用LIBOR贴现。

    29.20 描述你将如何(a)由上限的即期波动率来计算上限的单一波动率,和(b)由上限的单一波动率来计算上限的即期波动率。