17-6 α=2,β=2的例子
17-2中已经讲过,当α=2、β=2时,贝塔分布为以下二次函数:
y=(常数)×x (1-x ) (0≤x ≤1) …(5)
如图表17-5 所示,图像为抛物线(二次函数图像)的一部分。在概率分布图中,由于概率通过面积来表示,故所有事件的概率p(0≤x ≤1)与抛物线和x 轴围成的图形面积是一致的。基于标准化条件来考虑,由于该面积必须为1,那么用积分方法来计算面积,决定了在(5)式中(常数)=6。换言之,α=2、β=2的贝塔分布为
y=6x (1-x ) (0≤x ≤1) …(8)
在该概率分布中,若要计算出事件{0.5≤x <0.7}的概率p(0.5≤x <0.7),只需计算出图中涂有颜色部分的面积即可。但由于它是一个曲线图形,因此必须使用积分运算,用数学公式来表达,即为:
对于初学者来说,贝叶斯推理有着相当的难度的原因:即使在入门部分,也需要用到微积分的思考方式。当然,在标准的统计学(内曼-皮尔逊统计学)中,微积分的运用也是不可缺少的。不过,一般情况我们需要的推理,不一定会用到微积分,而大部分教科书也是采用的这种写法。另一个原因,在本书的后文部分也会涉及:在贝叶斯推理中,即便是入门阶段也不可避免地需要用到微积分。为此,本书选取了一个折中的方案:对概率密度函数进行解说,但不会涉及更深入的微分概念;此外,会针对概率分布图中,概率即面积这一问题进行解说,但也会省略掉如何具体运用积分理论计算面积的过程。总之,会在最大程度上避免涉及太多的微积分概念。
图表17-5 α=2,β=2的贝塔分布的概率分布图
