1-6 贝叶斯推理过程的总结
用图表对于之前提到的后验概率的计算方法进行总结,如图表1-9 所示。
图表1-9 关于顾客类别的贝叶斯推理过程
那么,通过求后验概率,我们能够了解到什么呢?其实,只要抽出图表的开头、中间和结尾部分,并填入数值,结果就很明确了。(图表1-10 )
图表1-10 有关顾客类别的贝叶斯更新
看这个图表便可了解到,在没有观察到任何行为时,面前的顾客是“来买东西的人”的概率为0.2(先验概率),但观察到“上前询问”这一行为之后,数值便更新为约0.43(后验概率)。也就是说,虽然并不能断定这位顾客就是“来买东西的人”,但这一结果的可能性提高到了以前的两倍 ,这便是“贝叶斯更新” 。
在本书中,上述过程称为“贝叶斯推理”。贝叶斯推理可以总结为:通过观察行动(信息),将先验概率通过贝叶斯更新,转换为后验概率。 在本书中,每个案例中进行的推算称为“贝叶斯推理”,而将这些案例中的推算方法整合起来,便是“贝叶斯统计学”。
