数智图书馆-无锡数智政务 本次搜索耗时 1.973 秒,为您找到 3983 个相关结果.
  • 23 彻底改造政府

    23 彻底改造政府 23 彻底改造政府 副总统阿尔·戈尔(Al Gore)在克林顿政府执政的第一年大张旗鼓地宣布要“彻底改造政府”,而全国上下只是哈欠连天地回应戈尔的许诺(共和党去年推出的“与美国订约”计划也提出了类似的许诺,但一开始应者寥寥)。从一开始,戈尔的动议不乏强大的宣传攻势。一篇接一篇的新闻稿宣布彻底改造一个又一个政府机构或计划;大型会议一个...
  • 空标题文档

    74 2025-06-17 《儿童教育》
    4. 一万种新的大学 新的高等教育是否能弥合从教育到就业的鸿沟? 其实,在我参加 TED 的前一年(2012),美国一些高校和教授就在致力于让更多知识能在互联网上分享。 Coursera 就是在 2012 年创办的,创始人是斯坦福大学计算机科学系教授 Andrew Ng 和 Daphne Koller 。紧随其后,麻省理工学院和哈佛大学联合创办了...
  • 空标题文档

    73 2025-06-18 《游戏改变人生》
    第15章 冒险3:时间大亨 完成时间: 10桩任务/10天 如果你有以下情况,本次冒险就很适合你。 总觉得一天的时间不够用,做不完你想做的事。 只有一样东西你总渴望拥有更多的话,那就是更多的自由时间。 你想要学着放慢时间,以便更有效地使用它。 这轮冒险包括以下3部分内容。 10桩任务; 6个补充能量块; 3个坏家伙。 怎么玩? 每...
  • 空标题文档

    第十一章 “这种事情经常发生吗?” (1914年~1920年) [译者题注] 1914年,第一次世界大战爆发,对美国和华尔街来说,这是一次历史性的机遇。到1918年战争结束的时候,美国超越了欧洲强国,而纽约则超越了伦敦。刚刚成为世界金融中心的华尔街遭受了一次巨大爆炸的冲击,惊魂未定的来访者战战兢兢地问华尔街人:“这种事情经常发生吗?”…… 译...
  • 空标题文档

    1.12 更多的init ()技术 我们再来看一下其他一些更高级的init ()技术的应用。相比前面的介绍,它们的应用场景不是特别常见。 以下是Player类的定义,初始化使用了两个策略对象和一个table对象。这个init ()函数看起来不够漂亮。 class Player:   def init ( self, table, bet_strate...
  • 第九章

    72 2025-06-11 《用数字讲故事》
    第九章 第九章 告别“干巴巴”,弗洛伦丝·南丁格尔玩转“移情”大法 19世纪50年代,英国。在克里米亚战争的余波中,涌现出了一位新型英雄。从战略层面看,这场战争取得了成功,英国与法国、撒丁王国、土耳其军队组成的联盟,果断地阻止了俄国的入侵。但对英军来说,战争无疑是一场灾难。军队医院里的战士们几乎被传染病和疏于照管摧毁殆尽。直言不讳的外国报道将这一事...
  • 空标题文档

    第五章 有国王的民主,没国王的极权 西罗马帝国灰飞烟灭,代之而起的是结构非常原始的国家。国王,也就是先前的日耳曼战士首领,他将土地分发给自己的子弟兵,而这些下属必须提供国王打仗所需的战力作为回报,一个国家就建基于这样的关系上。如此,国王不必征税或成立繁复的政府体系即可拥有军队。经由这种方式握有的土地后来被称为封地,拉丁文的“feudum”即是从这个名词...
  • 第12章 解构工作流程

    72 2025-06-16 《AI极简经济学》
    第12章 解构工作流程 在信息技术革命当中,企业问:“我们应该怎样在业务中贯彻计算机的应用?”对一部分企业来说,答案很简单:“找到要做计算的地方,用计算机代替人;计算机更快、更好、更廉价。”但对其他企业而言,答案就没这么一目了然了。尽管如此,它们还是做了实验。但是这些实验的成果需要时间来呈现。诺贝尔经济学奖得主罗伯特...
  • 空标题文档

    71 2025-06-18 《财务自由之路》
    第九章 复利的奇迹 谁了解并遵守资本法则,谁就可以获得金钱。 ——乔治·S·克拉森,《巴比伦最富有的人》 谁能使自己的金钱增值,谁就会富有;谁忽视金钱增值规律,谁就会失去金钱。事情就是这么简单。 如果你观察复利的奇迹,就会发现,如果你了解复利的力量,却不为了实现财务自由而运用它,那这就是不负责任的忽视。从这个...
  • 第四章 地方治理和风俗文化

    第四章 地方治理和风俗文化 第四章 地方治理和风俗文化 在16-17世纪的英格兰,教区、村庄和庄园是三个不同概念:教区是由牧师管理、传播信仰和救济慈善的教会基层单位;村庄作为一个地理概念,是农民居住的基本聚落;庄园则是以贵族或乡绅为核心的领地管理中心。一个教区可以包含数个村庄,一个村庄有时并非属于同一教区;同样,庄园和村庄也不一定拥有相同的地理边界,“...